Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

  • Chandrasekaran S
  • Liebig W
  • Mecklenburg M
 et al. 
  • 39

    Readers

    Mendeley users who have this article in their library.
  • 14

    Citations

    Citations of this article.

Abstract

Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7-15 mg/cm3was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. The present study investigates the fracture and failure of AG/epoxy composites and its energy absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KICfor AG/epoxy composites with 0.45 wt% of AG. Observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.

Author-supplied keywords

  • Fractography
  • Fracture toughness
  • Mechanical properties
  • Nanocomposites
  • Scanning electron microscopy

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free