The fracture toughness of cancellous bone

  • Cook R
  • Zioupos P
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

The mechanical capacity and integrity of cancellous bone is crucial in osteoporosis, a condition which is set to become more prevalent with increasing lifespan and population sizes. The fracture toughness (FT) of cancellous bone has never been examined before and the conditions associated with the growth of a major crack through the lattice of cancellous bone, a cellular solid, may improve our understanding for structural integrity of this material. The aim of this study is to provide (i) basic data on cancellous bone FT and (ii) the experimental support for the hypothesis of Gibson, L.J., Ashby, M.F. [1997a. Chapter 10: Wood. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 387-428; Gibson, L.J., Ashby, M.F., 1997b. Chapter 11: Cancellous Bone. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 429-52] that the FT of cancellous bone tissue is governed by the density of the tissue to a power function of between one and two. 294 SENB and 121 DC(T) specimen were manufactured from 45 human femoral heads, 37 osteoporotic and 8 osteoarthritic, as well as 19 equine thoracic vertebrae. The samples were manufactured in two groups: the first aligned with the trabecular structure (A(perpendicular to)), the second orientated at 90 degrees to the main trabecular orientation (A(perpendicular to)). The samples were tested in either tensile or bending mode to provide values of the stress intensity factor (K). The results which were obtained show a strong and significant link between the density of the cancellous bone tissue and that the critical stress intensity values are governed by the density of the tissue to a power function of between 1 and 2 (K-Q vs. apparent density: A(perpendicular to) = 1.58, A(II) = 1.6). Our results provide some fundamental values for the critical stress intensity factor for cancellous bone and also support the previous hypothesis as set by Gibson, L.J., Ashby, M.F., 1997a. Chapter 10: Wood. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 387-428; Gibson, L.J., Ashby, M.F., (1997b). Chapter 11: Cancellous Bone. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 429-52. (C) 2009 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links

Authors

  • R B Cook

  • P Zioupos

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free