A framework for mesencephalic dopamine systems based on predictive Hebbian learning

  • Montague P
  • Dayan P
  • Sejnowski T
  • 5

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

We develop a theoretical framework that shows how mesencephalic dopamine systems could distribute to their targets a signal that represents information about future expectations. In particular, we show how activity in the cerebral cortex can make predictions about future receipt of reward and how fluctuations in the activity levels of neurons in diffuse dopamine systems above and below baseline levels would represent errors in these predictions that are delivered to cortical and subcortical targets. We present a model for how such errors could be constructed in a real brain that is consistent with physiological results for a subset of dopaminergic neurons located in the ventral tegmental area and surrounding dopaminergic neurons. The theory also makes testable predictions about human choice behavior on a simple decision-making task. Furthermore, we show that, through a simple influence on synaptic plasticity, fluctuations in dopamine release can act to change the predictions in an appropriate manner.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • PR Montague

  • P Dayan

  • TJ Sejnowski

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free