Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: A study in a monozygotic twin

  • Vosselman M
  • Vijgen G
  • Kingma B
 et al. 
  • 52

    Readers

    Mendeley users who have this article in their library.
  • 10

    Citations

    Citations of this article.

Abstract

INTRODUCTION: Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a 'normal' sedentary lifestyle without extreme cold exposures was measured.

METHODS: The Iceman (subject A) and his brother (subject B) were studied during mild cold (13°C) and thermoneutral conditions (31°C). Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor.

RESULTS: Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal), within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G). CIT was relatively high (A: 40.1% and B: 41.9%), but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle.

CONCLUSION: No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the low subject number and the fact that both participants practised the g-Tummo like breathing technique.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • Boris KingmaTNO Locatie Soesterberg

    Follow
  • Maarten J. Vosselman

  • Guy H.E.J. Vijgen

  • Boudewijn Brans

  • Wouter D. Van Marken Lichtenbelt

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free