Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent

  • Osipovitch D
  • Griswold K
  • 19

    Readers

    Mendeley users who have this article in their library.
  • 7

    Citations

    Citations of this article.

Abstract

Despite intense efforts by the medical and pharmaceutical communities, Staphylococcus aureus continues to be a pervasive pathogen that causes a myriad of diseases and a high level of morbidity and mortality among infected patients. Thus, discovering or designing novel therapeutics able to kill both drug-resistant and drug-sensitive S. aureus remains a top priority. Bacteriolytic enzymes, mostly from phage, have shown great promise in preclinical studies, but little consideration has been given to cis-acting autolytic enzymes derived from the pathogen itself. Here, we use the S. aureus autolysin LytM as a proof of principal to demonstrate the antibacterial potential of endogenous peptidoglycan-degrading enzymes. While native LytM is only marginally bactericidal, fusion of LytM to the lysostaphin cell wall binding domain enhances its anti-staphylococcal activity approximately 540-fold, placing it on par with many phage lysins currently in preclinical development. The potential to therapeutically co-opt a pathogen's endogenous peptidoglycan recycling machinery opens the door to a previously untapped reservoir of antibacterial drug candidates.

Author-supplied keywords

  • Antimicrobial enzyme
  • Lysin
  • M23 peptidase
  • MRSA
  • Pentaglycine
  • Peptidoglycan hydrolysis

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free