Gain induced optical transparency in metamaterials

  • Strangi G
  • De Luca A
  • Ravaine S
 et al. 
  • 36

    Readers

    Mendeley users who have this article in their library.
  • 36

    Citations

    Citations of this article.

Abstract

We demonstrate that fluorophores coupled to plasmonic nanoparticles promote resonant excitation energy transfer processes leading to low-loss building block metamaterials. Experimental observations of Rayleigh scattering enhancement, accompanied by an increase in transmission as function of the gain, clearly reveal optical loss compensation effects. Fluorescence quenching is also observed in gain assisted nanoparticles owing to the increase in nonradiative decay rate triggered by plasmonic resonances. The gain induced transparency at optical frequencies is an unambiguous consequence of loss reduction in metamaterial subunits, representing a promising step to enable a wide range of electromagnetic properties of optical metamaterials. [ABSTRACT FROM AUTHOR] Copyright of Applied Physics Letters is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free