Gaussian process modelling of austenite formation in steel

  • Bailer-Jones C
  • Bhadeshia H
  • MacKay D
  • 24


    Mendeley users who have this article in their library.
  • 28


    Citations of this article.


Abstract The present paper introduces the Gaussian process model for the empirical modelling of the formation of austenite during the continuous heating of steels. A previous paper has examined the application of neural networks to this problem, but the Gaussian process model is a more general probabilistic model which avoids some of the arbitrariness of neural networks, and is somewhat more amenable to interpretation. It is demonstrated that the model leads to an improvement in the significance of the trends of the Ac1 and Ac3 temperatures as a function of the chemical composition and heating rate. In some cases, these predicted trends are more plausible than those obtained with the neural network analysis. Additionally, it is shown that many of the trace alloying elements present in steels are irrelevant in determining the austenite formation temperatures.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • C A L Bailer-Jones

  • H.K.D.H. Bhadeshia

  • D J C MacKay

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free