Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

  • Pottmann H
  • Huang Q
  • Yang Y
 et al. 
  • 40


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Abstract  The computation of a rigid body transformation which optimally aligns a set of measurement points with a surface and related registration problems are studied from the viewpoint of geometry and optimization. We provide a convergence analysis for widely used registration algorithms such as ICP, using either closest points (Besl and McKay, 1992) or tangent planes at closest points (Chen and Medioni, 1991) and for a recently developed approach based on quadratic approximants of the squared distance function (Pottmann et al., 2004). ICP based on closest points exhibits local linear convergence only. Its counterpart which minimizes squared distances to the tangent planes at closest points is a GaussNewton iteration; it achieves local quadratic convergence for a zero residual problem andif enhanced by regularization and step size controlcomes close to quadratic convergence in many realistic scenarios. Quadratically convergent algorithms are based on the approach in (Pottmann et al., 2004). The theoretical results are supported by a number of experiments; there, we also compare the algorithms with respect to global convergence behavior, stability and running time.

Author-supplied keywords

  • algorithm
  • convergence analysis
  • distance function
  • icp
  • kinematics
  • optimization
  • registration
  • rigid registration

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in


  • Helmut Pottmann

  • Qi-Xing Huang

  • Yong-Liang Yang

  • Shi-Min Hu

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free