Geroconversion of aged muscle stem cells under regenerative pressure

  • Sousa-Victor P
  • Perdiguero E
  • Muñoz-Ćanoves P
  • 36


    Mendeley users who have this article in their library.
  • 18


    Citations of this article.


Regeneration of skeletal muscle relies on a population of quiescent stem cells (satellite cells) and is impaired in very old (geriatric) individuals undergoing sarcopenia. Stem cell function is essential for organismal homeostasis, providing a renewable source of cells to repair damaged tissues. In adult organisms, age-dependent loss-of-function of tissue-specific stem cells is causally related with a decline in regenerative potential. Although environmental manipulations have shown good promise in the reversal of these conditions, recently we demonstrated that muscle stem cell aging is, in fact, a progressive process that results in persistent and irreversible changes in stem cell intrinsic properties. Global gene expression analyses uncovered an induction of p16(INK4a) in satellite cells of physiologically aged geriatric and progeric mice that inhibits satellite cell-dependent muscle regeneration. Aged satellite cells lose the repression of the INK4a locus, which switches stem cell reversible quiescence into a pre-senescent state; upon regenerative or proliferative pressure, these cells undergo accelerated senescence (geroconversion), through Rb-mediated repression of E2F target genes. p16(INK4a) silencing rejuvenated satellite cells, restoring regeneration in geriatric and progeric muscles. Thus, p16(INK4a)/Rb-driven stem cell senescence is causally implicated in the intrinsic defective regeneration of sarcopenic muscle. Here we discuss on how cellular senescence may be a common mechanism of stem cell aging at the organism level and show that induction of p16(INK4a) in young muscle stem cells through deletion of the Polycomb complex protein Bmi1 recapitulates the geriatric phenotype.

Author-supplied keywords

  • Aging
  • Geroconversion
  • Quiescence
  • Satellite cells
  • Senescence
  • Skeletal muscle
  • Stem cells

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Pedro Sousa-Victor

  • Eusebio Perdiguero

  • Pura Muñoz-Ćanoves

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free