Global quenching of premixed CH4/air flames: Effects of turbulent straining, equivalence ratio, and radiative heat loss

  • Yang S
  • Shy S
  • 30


    Mendeley users who have this article in their library.
  • 21


    Citations of this article.


Global quenching of premixed CH4/air flames with turbulent straining, equivalence ratio, and radiative heat loss effects is explored in a cruciform burner. The burner equipped with a pair of counter-rotating high-speed fans and perforated plates provides downward propagating flames through near-isotropic intense turbulence, where flame-turbulence interactions are not influenced by ignition. Several CH4/air flames with different degrees of radiative heat loss, from small (N2-diluted) to large (CO2-diluted), are investigated. Each case covers a range of the equivalence ratio (φ) with turbulent intensities (u'/SL) as much as 100, where SLis the laminar burning velocity, in which high rates of strain are achieved until, ultimately, global quenching of flames occurs. A Bradley's Karlovitz number, defined as K = 0.157(u'/SL)2= 0.157Ka, is used to quantify global quenching boundaries of these turbulent flames, where ReTReT-0.5and Ka are the turbulent Reynolds and Karlovitz numbers, respectively. For pure CH4/air flames, the critical value of K for global quenching of rich/lean CH4flames must be greater than 1.0/6.2. Values of Kc are very sensitive to φ, because Kc increases significantly as φ gradually approaches 1 from either lean or rich sides, with the maximum Kc occurring possibly near φ = 1. By comparing N2- and CO2-diluted flames of the same SL, it is found that global quenching of lean/rich CH4flames is/is not influenced by the radiatvie heat loss, respectively. The larger the radiative heat loss, the smaller the value of Kcfor lean CH4flames, in which values of Kcdecrease from 4 (N2-diluted) to 3 (CO2-diluted) where SL≈ 10 cm/s and φ = 0.62. On the other hand, Kc≈ 1.3 for both N2- and CO2-diluted rich CH4flames where SL≈ 10 cm/s and φ = 1.20-1.45. These experimental results are important to the understanding of global quenching processes for turbulent premixed combustion.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free