Graphene versus carbon nanotubes in electronic devices

  • Biswas C
  • Lee Y
  • 252


    Mendeley users who have this article in their library.
  • 128


    Citations of this article.


Advances in semiconductor device during last few decades enable us to improve the electronic device performance by minimizing the device dimension. However, further development of these systems encounters scientific and technological limits and forces us to explore better alternatives. Low-dimensional carbon allotropes such as carbon nanotube and graphene exhibit superior electronic, optoelectronic, and mechanical properties compared to the conventional semiconductors. This Feature Article reviews the recent progresses of carbon nanotubes and graphene researches and compares their electronic properties and electric device performances. A particular focus is the comparison of the characteristics in transparent conducting films (transparency and sheet resistance) and field-effect transistors (FETs) (device types, ambipolarity, mobility, doping strategy, FET-performance, logic and memory operations). Finally, the performance of devices that combine graphene and carbon nanotubes is also highlighted.

Author-supplied keywords

  • carbon nanotubes
  • electronic devices
  • field-effect transistors
  • graphene
  • transparent conducting film

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free