Grid cells use HCN1 channels for spatial scaling

  • Giocomo L
  • Hussaini S
  • Zheng F
 et al. 
  • 251


    Mendeley users who have this article in their library.
  • 85


    Citations of this article.


Entorhinal grid cells have periodic, hexagonally patterned firing locations that scale up progressively along the dorsal-ventral axis of medial entorhinal cortex. This topographic expansion corresponds with parallel changes in cellular properties dependent on the hyperpolarization-activated cation current (Ih), which is conducted by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. To test the hypothesis that grid scale is determined by Ih, we recorded grid cells in mice with forebrain-specific knockout of HCN1. We find that, although the dorsal-ventral gradient of the grid pattern was preserved in HCN1 knockout mice, the size and spacing of the grid fields, as well as the period of the accompanying theta modulation, was expanded at all dorsal-ventral levels. There was no change in theta modulation of simultaneously recorded entorhinal interneurons. These observations raise the possibility that, during self-motion-based navigation, Ih contributes to the gain of the transformation from movement signals to spatial firing fields. © 2011 Elsevier Inc.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Abid HussainiColumbia University Medical Center

  • Lisa M. Giocomo

  • Fan Zheng

  • Eric R. Kandel

  • May Britt Moser

  • Edvard I. Moser

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free