Growing scale-free networks with small-world behavior

  • Klemm K
  • Eguíluz V
  • 138


    Mendeley users who have this article in their library.
  • 3


    Citations of this article.


In the context of growing networks, we introduce a simple dynamical model that unifies the generic features of real networks: scale-free distribution of degree and the small world effect. While the average shortest path length increases logartihmically as in random networks, the clustering coefficient assumes a large value independent of system size. We derive expressions for the clustering coefficient in two limiting cases: random (C ~ (ln N)^2 / N) and highly clustered (C = 5/6) scale-free networks.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free