Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis

80Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.
Get full text

Abstract

ZnO nanoblades and nanoflowers are synthesized using zinc acetate dihydrate Zn(CH 3COO) 2·2H 2O dissolved in distilled water by ultrasonic pyrolysis at 380-500°C. Thermogravimetry-differential scanning calorimetry, x-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and low-temperature photoluminescence (PL) were used to characterize the thermal properties, crystalline and optical features of the ZnO nanostructures. The results showed that at 400°C the formation of nanoblades resulted from the simultaneous precipitation and nucleation in zinc acetate precursor. At an elevated temperature of 450°C, decomposition was almost advanced and thus the size of nanopetal became smaller and aggregates became larger by as much as 60 nm. The formation of aggregates is explained in terms of random nucleation model. Through PL measurement, nanoblade showed a strong near band-edge emission with negligible deep-level emission and free exciton band-gap energy E g(0) = 3.372 eV and Debye temperature β=477±65 K by the fitting curve of free exciton peak as a function of temperature to Varshni equation, E g(T)=E g(0)- αT 2(β+T), which are very close to bulk ZnO. © 2005 American Institute of Physics.

Cite

CITATION STYLE

APA

Sun, H. W., Kim, G. Y., Jung, Y. S., Choi, W. K., & Byun, D. (2005). Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. Journal of Applied Physics, 97(4). https://doi.org/10.1063/1.1849825

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free