Health Risk from the Use of Roof-Harvested Rainwater in Southeast Queensland, Australia, as Potable or Nonpotable Water, Determined Using Quantitative Microbial Risk Assessment

  • Ahmed W
  • Vieritz A
  • Goonetilleke A
 et al. 
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


A total of 214 rainwater samples from 82 tanks were collected in urban Southeast Queensland (SEQ) in Australia and analyzed for the presence and numbers of zoonotic bacterial and protozoal pathogens using binary PCR and quantitative PCR (qPCR). Quantitative microbial risk assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to potential pathogens from roof-harvested rainwater used as potable or nonpotable water. Of the 214 samples tested, 10.7%, 9.8%, 5.6%, and 0.4% were positive for the Salmonella invA, Giardia lamblia -giardin, Legionella pneumophila mip, and Campylobacter jejuni mapA genes, respectively. Cryptosporidium parvum oocyst wall protein (COWP) could not be detected. The estimated numbers of Salmonella, G. lamblia, and L. pneumophila organisms ranged from 6.5 101 to 3.8 102 cells, 0.6 100 to 3.6 100 cysts, and 6.0 101 to 1.7 102 cells per 1,000 ml of water, respectively. Six risk scenarios were considered for exposure to Salmonella spp., G. lamblia, and L. pneumophila. For Salmonella spp. and G. lamblia, these scenarios were (i) liquid ingestion due to drinking of rainwater on a daily basis, (ii) accidental liquid ingestion due to hosing twice a week, (iii) aerosol ingestion due to showering on a daily basis, and (iv) aerosol ingestion due to hosing twice a week. For L. pneumophila, these scenarios were (i) aerosol inhalation due to showering on a daily basis and (ii) aerosol inhalation due to hosing twice a week. The risk of infection from Salmonella spp., G. lamblia, and L. pneumophila associated with the use of rainwater for showering and garden hosing was calculated to be well below the threshold value of one extra infection per 10,000 persons per year in urban SEQ. However, the risk of infection from ingesting Salmonella spp. and G. lamblia via drinking exceeded this threshold value and indicated that if undisinfected rainwater is ingested by drinking, then the incidences of the gastrointestinal diseases salmonellosis and giardiasis are expected to range from 9.8 100 to 5.4 101 (with a mean of 1.2 101 from Monte Carlo analysis) and from 1.0 101 to 6.5 101 cases (with a mean of 1.6 101 from Monte Carlo analysis) per 10,000 persons per year, respectively, in urban SEQ. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically examined. Nonetheless, it would seem prudent to disinfect rainwater for use as potable water.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • W Ahmed

  • A Vieritz

  • Ashantha Goonetilleke

  • T Gardner

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free