Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models

  • Zcharia E
  • 62

    Readers

    Mendeley users who have this article in their library.
  • 106

    Citations

    Citations of this article.

Abstract

Orchestration of the rapid formation and reorganization of new tissue observed in wound healing involves not only cells and polypeptides but also the extracellular matrix (ECM) microenvironment. The ability of heparan sulfate (HS) to interact with major components of the ECM suggests a key role for HS in maintaining the structural integrity of the ECM. Heparanase, an endoglycosidase-degrading HS in the ECM and cell surface, is involved in the enzymatic machinery that enables cellular invasion and release of HS-bound polypeptides residing in the ECM. Bioavailabilty and activation of multitude mediators capable of promoting cell migration, proliferation, and neovascularization are of particular importance in the complex setting of wound healing. We provide evidence that heparanase is normally expressed in skin and in the wound granulation tissue. Heparanase stimulated keratinocyte cell migration and wound closure in vitro. Topical application of recombinant heparanase significantly accelerated wound healing in a flap/punch model and markedly improved flap survival. These heparanase effects were associated with enhanced wound epithelialization and blood vessel maturation. Similarly, a marked elevation in wound angiogenesis, evaluated by MRI analysis and histological analyses, was observed in heparanase-overexpressing transgenic mice. This effect was blocked by a novel, newly developed, heparanase-inhibiting glycol-split fragment of heparin. These results clearly indicate that elevation of heparanase levels in healing wounds markedly accelerates tissue repair and skin survival that are mediated primarily by an enhanced angiogenic response.-Zcharia, E., Zilka, R., Yaar, A., Yacoby-Zeevi, O., Zetser, A., Metzger, S., Sarid, R., Naggi, A., Casu, B., Ilan, N., Vlodavsky, I., Abramovitch, R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • E. Zcharia

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free