High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array

47Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Long-term neuroprostheses for functional electrical stimulation must efficiently stimulate tissue without electrolyzing water and raising the extracellular pH to toxic levels. Comparison of the stimulation efficiency of tungsten wire electrodes (W wires), platinum microelectrode arrays (PtMEA), as-grown vertically aligned carbon nanofiber microbrush arrays (VACNF MBAs), and polypyrrole coated (PPy-coated) VACNF MBAs in eliciting field potentials in the hippocampus slice indicates that, at low stimulating voltages that preclude the electrolysis of water, only the PPy-coated VACNF MBA is able to stimulate the CA3 to CA1 pathway. Unlike the W wires, PtMEA, as-grown VACNF MBA, and the PPy-coated VACNF MBA elicit only excitatory postsynaptic potentials (EPSPs). Furthermore, the PPy-coated VACNF MBA evokes somatic action potentials in addition to EPSPs. These results highlight the PPy-coated VACNF's advantages in lower electrode impedance, ability to stimulate tissue through a biocompatible chloride flux, and stable vertical alignment in liquid that enables access to spatially confined regions of neuronal cells. © The Author(s) 2009.

Cite

CITATION STYLE

APA

de Asis, E. D., Nguyen-Vu, T. D. B., Arumugam, P. U., Chen, H., Cassell, A. M., Andrews, R. J., … Li, J. (2009). High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array. Biomedical Microdevices, 11(4), 801–808. https://doi.org/10.1007/s10544-009-9295-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free