A high-content, high-throughput siRNA screen identifies cyclin D2 as a potent regulator of muscle progenitor cell fusion and a target to enhance muscle regeneration

13Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cell-mediated regenerative approaches using muscle progenitor cells hold promises for the treatment of many formsofmuscle disorders. Their applicability in the clinic, however, is hindered by the low levels of regeneration obtained after transplantation and the large number of cells required to achieve an effect. To better understand themechanisms that regulate the temporal switch of replicatingmuscle progenitor cells into terminally differentiated cells and to develop new strategies that could enhance muscle regeneration, we have developed and performed a high-throughput screening (HTS) capable of identifying genes that play active roles during\ myogenesis. Secondary and tertiary screens were used to confirm the effects of RNAi in vitro and in vivo and to select for candidate hits that significantly increase regeneration into skeletal muscles. Downregulation of cyclin D2 (CCND2) was shown to dramatically enhance myogenic differentiation of muscle progenitor cells and to induce a robust regeneration after cell transplantation into skeletal muscles of dystrophin-deficient mice. Protein interaction network and pathway analysis revealed that CCND2 directly interacts with the cyclin-dependent kinase Cdk4 to inhibit phosphorylation of the retinoblastoma protein (pRb), thus blocking the activation of the myogenic switch during fusion. These studies identify CCND2 as a new key regulator of terminal differentiation in muscle progenitor cells and open new possibilities for the treatment of many forms of muscle disorders characterized by impaired regeneration and loss of muscle mass. © The Author 2013. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Khanjyan, M. V., Yang, J., Kayali, R., Caldwell, T., & Bertoni, C. (2013). A high-content, high-throughput siRNA screen identifies cyclin D2 as a potent regulator of muscle progenitor cell fusion and a target to enhance muscle regeneration. Human Molecular Genetics, 22(16), 3283–3295. https://doi.org/10.1093/hmg/ddt184

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free