Highly filled bionanocomposites from functionalized polysaccharide nanocrystals

  • Habibi Y
  • Dufresne A
  • 106

    Readers

    Mendeley users who have this article in their library.
  • 214

    Citations

    Citations of this article.

Abstract

Cellulose and starch nanocrystals obtained from the acid hydrolysis of ramie fibers and waxy maize starch granules, respectively, were subjected to isocyanate-mediated reaction to graft polycaprolactone (PCL) chains with various molecular weights on their surface. Grafted nanoparticles were characterized by X-ray diffraction analysis and contact angle measurements. We observed that the nanoparticles kept their initial morphological integrity and native crystallinity. Nanocomposite films were processed from both unmodified and PCL-grafted nanoparticles and PCL as matrix using a casting/evaporation technique. We showed that mechanical properties of resulting films were notably different. Compared to unmodified nanoparticles, the grafting of PCL chains on the surface results in lower modulus values but significantly higher strain at break. This unusual behavior clearly reflects the originality of the reinforcing phenomenon of polysaccharide nanocrystals resulting from the formation of a percolating network thanks to chain entanglements and cocrystallization.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free