Histopathology image classification using bag of features and kernel functions

  • Caicedo J
  • Cruz A
  • Gonzalez F
  • 68


    Mendeley users who have this article in their library.
  • 90


    Citations of this article.


Image representation is an important issue for medical image analysis, classification and retrieval. Recently, the bag of features approach has been proposed to classify natural scenes, using an analogy in which visual features are to images as words are to text documents. This process involves feature detection and description, construction of a visual vocabulary and image representation building through visual-word occurrence analysis. This paper presents an evaluation of different representations obtained from the bag of features approach to classify histopathology images. The obtained image descriptors are processed using appropriate kernel functions for Support Vector Machines classifiers. This evaluation includes extensive experimentation of different strategies, and analyses the impact of each configuration in the classification result.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free