Host cell actin polymerization is required for cellular retention of Trypanosoma cruzi and early association with endosomal/lysosomal compartments

  • Woolsey A
  • Burleigh B
  • 45

    Readers

    Mendeley users who have this article in their library.
  • 50

    Citations

    Citations of this article.

Abstract

One of the hallmarks of Trypanosoma cruzi invasion of non-professional phagocytes is facilitation of the process by host cell actin depolymerization. Host cell entry by invasive T. cruzi trypomastigotes is accomplished by exploiting a cellular wound repair process involving Ca2+-regulated lysosome exocytosis (i.e. lysosome-dependent) or by engaging a recently recognized lysosome-independent pathway. It was originally postulated that cortical actin microfilaments present a barrier to lysosome-plasma membrane fusion and that transient actin depolymerization enhances T. cruzi entry by increasing access to the plasma membrane for lysosome fusion. Here we demonstrate that cytochalasin D treatment of host cells inhibits early lysosome association with invading T. cruzi trypomastigotes by uncoupling the cell penetration step from lysosome recruitment and/or fusion. These findings provide the first indication that lysosome-dependent T. cruzi entry is initiated by plasma membrane invagination similar to that observed for lysosome-independent entry. Furthermore, prolonged disruption of host cell actin microfilaments results in significant loss of internalized parasites from infected host cells. Thus, the ability of internalized trypomastigotes to remain cell-associated and to fuse with host cell lysosomes is critically dependent upon host cell actin reassembly, revealing an unanticipated role for cellular actin remodelling in the T. cruzi invasion process.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free