Humans and bots in internet chat: Measurement, analysis, and automated classification

  • Gianvecchio S
  • Xie M
  • Wu Z
 et al. 
  • 107

    Readers

    Mendeley users who have this article in their library.
  • 15

    Citations

    Citations of this article.

Abstract

The abuse of chat services by automated programs, known as chat bots, poses a serious threat to Internet users. Chat bots target popular chat networks to distribute spam and malware. In this paper, we first conduct a series of measurements on a large commercial chat network. Our measurements capture a total of 16 different types of chat bots ranging from simple to advanced. Moreover, we observe that human behavior is more complex than bot behavior. Based on the measurement study, we propose a classification system to accurately distinguish chat bots from human users. The proposed classification system consists of two components: 1) an entropy-based classifier; and 2) a Bayesian-based classifier. The two classifiers complement each other in chat bot detection. The entropy-based classifier is more accurate to detect unknown chat bots, whereas the Bayesian-based classifier is faster to detect known chat bots. Our experimental evaluation shows that the proposed classification system is highly effective in differentiating bots from humans.

Author-supplied keywords

  • Bots
  • Internet chat
  • classification
  • measurement

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free