A hybrid approach with collaborative filtering for recommender systems

  • Badaro G
  • Hajj H
  • El-Hajj W
 et al. 
  • 15


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


The proliferation of powerful smart devices is revolutionizing mobile computing systems. A particular set of applications that is gaining wide interest is recommender systems. Recommender systems provide their users with recommendations on variety of personal and relevant items or activities. They can play a significant role in today's life whether in E-commerce or for daily decisions that we need to make. We introduce a hybrid approach for solving the problem of finding the ratings of unrated items in a user-item ranking matrix through a weighted combination of user-based and item-based collaborative filtering. The proposed technique provides improvements in addressing two major challenges of recommender systems: accuracy of recommender systems and sparsity of data by simultaneously incorporating users' correlations and items ones. The evaluation of the system shows superiority of the solution compared to stand-alone user-based collaborative filtering or item-based collaborative filtering.

Author-supplied keywords

  • collaborative filtering
  • matrix algebra
  • mobile comp

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • G Badaro

  • H Hajj

  • W El-Hajj

  • L Nachman

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free