Hydrologic Variability and Its Control of Phytoplankton Community Structure and Function in Two Shallow, Coastal, Lagoonal Ecosystems: The Neuse and New River Estuaries, North Carolina, USA

73Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Hydrologic conditions, especially changes in freshwater input, play an important, and at times dominant, role in determining the structure and function of phytoplankton communities and resultant water quality of estuaries. This is particularly true for microtidal, shallow water, lagoonal estuaries, where water flushing and residence times show large variations in response to changes in freshwater inputs. In coastal North Carolina, there has been an increase in frequency and intensity of extreme climatic (hydrologic) events over the past 15 years, including eight hurricanes, six tropical storms, and several record droughts; these events are forecast to continue in the foreseeable future. Each of the past storms exhibited unique hydrologic and nutrient loading scenarios for two representative and proximate coastal plain lagoonal estuaries, the Neuse and New River estuaries. In this synthesis, we used a 13-year (1998-2011) data set from the Neuse River Estuary, and more recent 4-year (2007-2011) data set from the nearby New River Estuary to examine the effects of these hydrologic events on phytoplankton community biomass and composition. We focused on the ability of specific taxonomic groups to optimize growth under hydrologically variable conditions, including seasonal wet/dry periods, episodic storms, and droughts. Changes in phytoplankton community composition and biomass were strongly modulated by the amounts, duration, and seasonality of freshwater discharge. In both estuaries, phytoplankton total and specific taxonomic group biomass exhibited a distinctive unimodal response to varying flushing rates resulting from both event-scale (i.e., major storms, hurricanes) and more chronic seasonal changes in freshwater input. However, unlike the net negative growth seen at long flushing times for nano-/microphytoplankton, the pigments specific to picophytoplankton (zeaxanthin) still showed positive net growth due to their competitive advantage under nutrient-limited conditions. Along with considerations of seasonality (temperature regimes), these relationships can be used to predict relative changes in phytoplankton community composition in response to hydrologic events and changes therein. Freshwater inputs and droughts, while not manageable in the short term, must be incorporated in water quality management strategies for these and other estuarine and coastal ecosystems faced with increasing frequencies and intensities of tropical cyclones, flooding, and droughts. © 2013 Coastal and Estuarine Research Federation.

Cite

CITATION STYLE

APA

Paerl, H. W., Hall, N. S., Peierls, B. L., Rossignol, K. L., & Joyner, A. R. (2014). Hydrologic Variability and Its Control of Phytoplankton Community Structure and Function in Two Shallow, Coastal, Lagoonal Ecosystems: The Neuse and New River Estuaries, North Carolina, USA. Estuaries and Coasts, 37(S1), 31–45. https://doi.org/10.1007/s12237-013-9686-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free