Skip to content
Journal article

Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields

Steele C, Dorling S, Von Glasow R, Bacon J ...see all

Atmospheric Chemistry and Physics, vol. 13, issue 1 (2013) pp. 443-461

  • 40

    Readers

    Mendeley users who have this article in their library.
  • 15

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

The behaviour and characteristics of the marine component of sea breeze cells have received little attention relative to their onshore counterparts. Yet there is a growing interest and dependence on the offshore wind climate from, for example, a wind energy perspective. Using idealized model experiments, we investigate the sea breeze circulation at scales which approximate to those of the southern North Sea, a region of major ongoing offshore wind farm development. We also contrast the scales and characteristics of the and the little known corkscrew and backdoor sea breeze types, where the type is pre-defined by the orientation of the synoptic scale flow relative to the shoreline. We find, crucially, that pure sea breezes, in contrast to types, can lead to substantial wind speed reductions offshore and that the addition of a second eastern coastline emphasises this effect through generation of offshore "calm zones". The offshore extent of all sea breeze types is found to be sensitive to both the influence of Coriolis acceleration and to the boundary layer scheme selected. These extents range, for example for a sea breeze produced in a 2 m s+1 offshore gradient wind, from 0 km to 21 km between the Mellor-Yamada-Nakanishi-Niino and the Yonsei State University schemes respectively. The type restricts the development of a sea breeze on the opposite coast and is also capable of traversing a 100 km offshore domain even under high along-shore gradient wind speed (>15 m s-1) conditions. Realistic variations in sea surface skin temperature and initializing vertical thermodynamic profile do not significantly alter the resulting circulation, though the strengths of the simulated sea breezes are modulated if the effective land-sea thermal contrast is altered. We highlight how sea breeze impacts on circulation need to be considered in order to improve the accuracy of both assessments of the offshore wind energy climate and forecasts of wind energy output. © 2013 Author(s).

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below