Identification of mammalian orthologs using local synteny

  • Jun J
  • Mandoiu I
  • Nelson C
 et al. 
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Accurate determination of orthology is central to comparative genomics. For vertebrates in particular, very large gene families, high rates of gene duplication and loss, multiple mechanisms of gene duplication, and high rates of retrotransposition all combine to make inference of orthology between genes difficult. Many methods have been developed to identify orthologous genes, mostly based upon analysis of the inferred protein sequence of the genes. More recently, methods have been proposed that use genomic context in addition to protein sequence to improve orthology assignment in vertebrates. Such methods have been most successfully implemented in fungal genomes and have long been used in prokaryotic genomes, where gene order is far less variable than in vertebrates. However, to our knowledge, no explicit comparison of synteny and sequence based definitions of orthology has been reported in vertebrates, or, more specifically, in mammals. We test a simple method for the measurement and utilization of gene order (local synteny) in the identification of mammalian orthologs by investigating the agreement between coding sequence based orthology (Inparanoid) and local synteny based orthology. In the 5 mammalian genomes studied, 93% of the sampled inter-species pairs were found to be concordant between the two orthology methods, illustrating that local synteny is a robust substitute to coding sequence for identifying orthologs. However, 7% of pairs were found to be discordant between local synteny and Inparanoid. These cases of discordance result from evolutionary events including retrotransposition and genome rearrangements. By analyzing cases of discordance between local synteny and Inparanoid we show that local synteny can distinguish between true orthologs and recent retrogenes, can resolve ambiguous many-to-many orthology relationships into one-to-one ortholog pairs, and might be used to identify cases of non-orthologous gene displacement by retroduplicated paralogs.

Author-supplied keywords

  • Animal Genetics and Genomics
  • Life Sciences
  • Microarrays
  • Microbial Genetics and Genomics
  • Plant Genetics & Genomics
  • Proteomics
  • general

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Jin Jun

  • Ion I Mandoiu

  • Craig E Nelson

  • A Berglund

  • E Sjolund

  • G Ostlund

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free