Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction

743Citations
Citations of this article
183Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A simple and reliable method using a polymerase chain reaction (PCR) was devised to identify methicillin-resistant staphylococci. By using lysates of the strain to be tested as templates and 22-mer oligonucleotides as primers, a 533-bp region of mecA, the structural gene of a low-affinity penicillin-binding protein (PBP 2'), was amplified by PCR and detected by agarose gel electrophoresis. Results obtained by this method were compared with those obtained by broth microdilution MIC determination for 210 and 100 clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci, respectively. Of 99 mecA-negative S. aureus isolates, 100% of the strains were methicillin susceptible and 98% of the strains were oxacillin susceptible. Three strains (3%) of 111 mecA-positive S. aureus isolates exhibited almost the same susceptibility to β-lactams as the mecA-negative ones and did not produce detectable amounts of PBP 2' despite the presence of the mecA gene. One of them yielded typically methicillin-resistant variants at low frequency with concomitant recovery of PBP 2' production. The mecA gene was also found in coagulase-negative Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus sciuri, Staphylococcus saprophyticus, and Staphylococcus caprae and conferred resistance on most of the bacteria.

Cite

CITATION STYLE

APA

Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H., & Watanabe, S. (1991). Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. Journal of Clinical Microbiology, 29(10), 2240–2244. https://doi.org/10.1128/jcm.29.10.2240-2244.1991

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free