Identification of a Precursor to Phosphatidyl Choline-Specific B-1 Cells Suggesting That B-1 Cells Differentiate from Splenic Conventional B Cells In Vivo: Cyclosporin A Blocks Differentiation to B-1

  • Arnold L
  • McCray S
  • Tatu C
 et al. 
  • 10

    Readers

    Mendeley users who have this article in their library.
  • 44

    Citations

    Citations of this article.

Abstract

The origin of B-1 cells is controversial. The initial paradigm posited that B-1 and B-2 cells derive from separate lineages. More recently it has been argued that B-1 cells derive from conventional B cells as a result of T-independent Ag activation. To understand B-1 cell differentiation, we have generated Ig transgenic (Tg) mice using the H and L chain genes (VH12 and Vκ4) of anti-phosphatidyl choline (anti-PtC) B cells. In normal mice anti-PtC B cells segregate to B-1. Segregation is intact in VH12 (6-1) and VH12/Vκ4 (double) Tg mice that develop large numbers of PtC-specific B cells. However, if B-1 cell differentiation is blocked, anti-PtC B cells in these Tg mice are B-2-like in phenotype, suggesting the existence of an Ag-driven differentiative pathway from B-2 to B-1. In this study, we show that double Tg mice have a population of anti-PtC B cells that have the phenotypic characteristics of both B-2 and B-1 cells and that have the potential to differentiate to B-1 (B-1a and B-1b). Cyclosporin A blocks this differentiation and induces a more B-2-like phenotype in these cells. These findings indicate that these cells are intermediate between B-2 and B-1, further evidence of a B-2 to B-1 differentiative pathway.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Larry W Arnold

  • Suzanne K McCray

  • Calin Tatu

  • Stephen H Clarke

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free