Identification of transcription factor's targets using tissue-specific transcriptomic data in Arabidopsis thaliana

  • Srivastava G
  • Li P
  • Liu J
 et al. 
  • 44

    Readers

    Mendeley users who have this article in their library.
  • 10

    Citations

    Citations of this article.

Abstract

BACKGROUND Transcription factors (TFs) regulate downstream genes in response to environmental stresses in plants. Identification of TF target genes can provide insight on molecular mechanisms of stress response systems, which can lead to practical applications such as engineering crops that thrive in challenging environments. Despite various computational techniques that have been developed for identifying TF targets, it remains a challenge to make best use of available experimental data, especially from time-series transcriptome profiling data, for improving TF target identification. RESULTS In this study, we used a novel approach that combined kinetic modelling of gene expression with a statistical meta-analysis to predict targets of 757 TFs using expression data of 14,905 genes in Arabidopsis exposed to different durations and types of abiotic stresses. Using a kinetic model for the time delay between the expression of a TF gene and its potential targets, we shifted a TF's expression profile to make an interacting pair coherent. We found that partitioning the expression data by tissue and developmental stage improved correlation between TFs and their targets. We identified consensus pairs of correlated profiles between a TF and all other genes among partitioned datasets. We applied this approach to predict novel targets of known TFs. Some of these putative targets were validated from the literature, for E2F's targets in particular, while others provide explicit genes as hypotheses for future studies. CONCLUSION Our method provides a general framework for TF target prediction with consideration of the time lag between initiation of a TF and activation of its targets. The framework helps make significant inferences by reducing the effects of independent noises in different experiments and by identifying recurring regulatory relationships under various biological conditions. Our TF target predictions may shed some light on common regulatory networks in abiotic stress responses.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Gyan P. Srivastava

  • Ping Li

  • Jingdong Liu

  • Dong Xu

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free