The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity

94Citations
Citations of this article
134Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Drosophila melanogaster is an arthropod with a much more complex anatomy and physiology than the nematode Caenorhabditis elegans. We investigated one of the protein superfamilies in the two organisms that plays a major role in development and function of cell-cell communication: the immunoglobulin superfamily (IgSF). Using hidden Markov models, we identified 142 IgSF proteins in Drosophila and 80 in C. elegans. Of these, 58 and 22, respectively, have been previously identified by experiments. On the basis of homology and the structural characterisation of the proteins, we can suggest probable types of function for most of the novel proteins. Though overall Drosophila has fewer genes than C. elegans, it has many more IgSF cell-surface and secreted proteins. Half the IgSF proteins in C. elegans and three quarters of those in Drosophila have evolved subsequent to the divergence of the two organisms. These results suggest that the expansion of this protein superfamily is one of the factors that have contributed to the formation of the more complex physiological features that are found in Drosophila.

Cite

CITATION STYLE

APA

Vogel, C., Teichmann, S. A., & Chothia, C. (2003). The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity. Development, 130(25), 6317–6328. https://doi.org/10.1242/dev.00848

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free