Impacts of a large-bodied, apex predator (Alligator mississippiensis Daudin 1801) on salt marsh food webs

  • Nifong J
  • Silliman B
  • 63


    Mendeley users who have this article in their library.
  • 21


    Citations of this article.


Large-bodied apex predators (e.g., sharks, wolves, crocodilians) are believed to regulate food web structure and drive ecosystem processes, but there remains relatively little experimental evidence. Here we use field surveys and a mesocosm experiment to evaluate the cascading effects of an apex predator (American alligator) on a salt marsh food web. Consistent with previous studies (n. = 10), field surveys revealed blue crabs (Callinectes sapidus Rathbun 1896), an important marsh mesopredator, were a frequent component of estuarine-occurring alligators' diet (mean. ±. SD, 47. ±. 20%, n. = 1384). In mesocosms, we examined potential consequences of this interaction in a simplified salt marsh community. We experimentally isolated alligator effects on the abundance (consumptive effect) and behavior (non-consumptive effect) of blue crabs and on blue crab consumption of plant-grazing snails and ribbed mussels. Alligators reduced blue crab abundance by ~. 40% over 3. days and induced behavioral changes, resulting in decreased foraging activity and increased refuge use by blue crabs. The combined effects of reduced crab abundance and altered behavior translated into increased survival of both a keystone grazer (snails) and a mutualist (mussels) within the salt marsh food web. Our findings experimentally demonstrate that a large-bodied, apex predator has the potential to 1) generate a trophic cascade, 2) elicit behavioral changes (i.e., non-consumptive effects) in mesopredator prey, and 3) indirectly affect the potential for both grazing and mutualism to occur in this food chain. Our results generate testable hypotheses regarding the broad-scale effects of alligator presence and top-down forcing in salt marsh ecosystems. © 2013 Elsevier B.V.

Author-supplied keywords

  • Callinectes sapidus
  • Consumptive effects (CEs)
  • Littoraria irrorata
  • Non-consumptive effects (NCEs)
  • Predator-prey interactions
  • Trophic cascade

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free