Journal article

Impacts of transported background pollutants on summertime western US air quality: Model evaluation, sensitivity analysis and data assimilation

Huang M, Carmichael G, Chai T, Pierce R, Oltmans S, Jaffe D, Bowman K, Kaduwela A, Cai C, Spak S, Weinheimer A, Huey L, Diskin G ...see all

Atmospheric Chemistry and Physics, vol. 13, issue 1 (2013) pp. 359-391

  • 23


    Mendeley users who have this article in their library.
  • 15


    Citations of this article.
Sign in to save reference


The impacts of transported background (TBG) pollutants on western US ozone (O 3) distributions in sum-mer 2008 are studied using the multi-scale Sulfur Trans-port and dEposition Modeling system. Forward sensitivity simulations show that TBG contributes ∼30–35 ppb to the surface Monthly mean Daily maximum 8-h Average O 3 (MDA8) over Pacific Southwest (US Environmental Protec-tion Agency (EPA) Region 9, including California, Nevada and Arizona) and Pacific Northwest (EPA Region 10, in-cluding Washington, Oregon and Idaho), and ∼10–17 ppm-h to the secondary standard metric " W126 monthly index " over EPA Region 9 and ∼3–4 ppm-h over Region 10. The strongest TBG impacts on W126 occur over the grass/shrub-covered regions. Among TBG pollutants, O 3 is the major contributor to surface O 3 , while peroxyacetyl nitrate is the most important O 3 precursor species. W126 shows larger re-sponses than MDA8 to perturbations in TBG and stronger non-linearity to the magnitude of perturbations. The TBG impacts on both metrics overall negatively correlate to model vertical resolution and positively correlate to the horizontal resolution. The mechanisms that determine TBG contributions and their variation are analyzed using trajectories and the receptor-based adjoint sensitivity analysis, which demon-strate the connection between the surface O 3 and O 3 aloft (at ∼1–4 km) 1–2 days earlier. The probabilities of airmasses originating from Mt. Bachelor (2.7 km) and 2.5 km above Trinidad Head (THD) entraining into the boundary layer reach daily maxima of 66 % and 34 % at ∼03:00 p.m. Pacific Daylight Time (PDT), respectively, and stay above 50 % dur-ing 09:00 a.m.–04:00 p.m. PDT for those originating 1.5 km above California's South Coast. Assimilation of the surface in-situ measurements signif-icantly reduced the errors in the modeled surface O 3 dur-ing a long-range transport episode by ∼5 ppb on average (up to ∼17 ppb) and increased the estimated TBG contri-butions by ∼3 ppb. Available O 3 vertical profiles from Tro-pospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI) and THD sonde identified this transport Published by Copernicus Publications on behalf of the European Geosciences Union. 360 M. Huang et al.: Impacts of transported background pollutants on summertime western US air quality event, but assimilation of these observations in this case did not efficiently improve the O 3 distributions except near the sampling locations, due to their limited spatiotemporal reso-lution and/or possible uncertainties.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free