Skip to content
Journal article

Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

Ryu Y, Baik J, Kwak K, Kim S, Moon N ...see all

Atmospheric Chemistry and Physics, vol. 13, issue 4 (2013) pp. 2177-2194 Published by Copernicus GmbH

  • 22

    Readers

    Mendeley users who have this article in their library.
  • 19

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3) episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ). Under fair weather conditions, the temperature excess (urban heat island) significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC) emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural) emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the sea-breeze inflow layer reduces NOx levels, thus contributing to the elevated O3 levels in the urban area.

Find this document

Get full text

Authors

  • Y. H. Ryu

  • J. J. Baik

  • K. H. Kwak

  • S. Kim

  • N. Moon

Cite this document

Choose a citation style from the tabs below