Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling

92Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Euler–Lagrange methods are popular approaches for simulating particle-laden flows. While such approaches have been rigorously verified in the dilute limit (where particles do not noticeably alter their carrier flow), much less verification has been attempted for cases where the coupling between the two phases leads to non-negligible modifications in the local fluid velocity. We review one of these techniques for coupled fluid–particle flows, the volume-filtered Euler–Lagrange method, and show that it (like many similar methods) provides erroneous predictions for the interphase drag force due to the presence of the particles. We show that these errors are tied to inaccuracies in the numerical implementation of the drag model for systems with two-way coupling. We therefore introduce a simple approach to correct the implementation of this drag model, and show that this corrected implementation provides accurate and grid-independent predictions of particle settling in two-way coupled flows at low particle Reynolds numbers. Finally, we study the effect of the corrected implementation on a more complicated, cluster-induced turbulence flow.

Cite

CITATION STYLE

APA

Ireland, P. J., & Desjardins, O. (2017). Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. Journal of Computational Physics, 338, 405–430. https://doi.org/10.1016/j.jcp.2017.02.070

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free