Improving solar cell efficiencies by down-conversion of high-energy photons

948Citations
Citations of this article
521Readers
Mendeley users who have this article in their library.
Get full text

Abstract

One of the major loss mechanisms leading to low energy conversion efficiencies of solar cells is the thermalization of charge carriers generated by the absorption of high-energy photons. These losses can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. A method to realize multiple electron-hole pair generation per incident photon is proposed in this article. Incident photons with energies larger than twice the band gap of the solar cell are absorbed by a luminescence converter, which transforms them into two or more lower energy photons. The theoretical efficiency limit of this system for nonconcentrated sunlight is determined as a function of the solar cell's band gap using detailed balance calculations. It is shown that a maximum conversion efficiency of 39.63% can be achieved for a 6000 K blackbody spectrum and for a luminescence converter with one intermediate level. This is a substantial improvement over the limiting efficiency of 30.9%, which a solar cell exposed directly to nonconcentrated radiation may have under the same assumption of radiative recombination only. © 2002 American Institute of Physics.

Cite

CITATION STYLE

APA

Trupke, T., Green, M. A., & Würfel, P. (2002). Improving solar cell efficiencies by down-conversion of high-energy photons. Journal of Applied Physics, 92(3), 1668–1674. https://doi.org/10.1063/1.1492021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free