An inbred line of the diploid strawberry Fragaria vesca F. semperflorens for genomic and molecular genetic studies in the Rosaceae

  • Slovin J
  • Schmitt K
  • Folta K
  • 64


    Mendeley users who have this article in their library.
  • 28


    Citations of this article.


Background: The diploid woodland strawberry (Fragaria vesca) is an attractive system for functional genomics studies. Its small stature, fast regeneration time, efficient transformability and small genome size, together with substantial EST and genomic sequence resources make it an ideal reference plant for Fragaria and other herbaceous perennials. Most importantly, this species shares gene sequence similarity and genomic microcolinearity with other members of the Rosaceae family, including large-statured tree crops (such as apple, peach and cherry), and brambles and roses as well as with the cultivated octoploid strawberry, F. ×ananassa. F. vesca may be used to quickly address questions of gene function relevant to these valuable crop species. Although some F. vesca lines have been shown to be substantially homozygous, in our hands plants in purportedly homozygous populations exhibited a range of morphological and physiological variation, confounding phenotypic analyses. We also found the genotype of a named variety, thought to be well-characterized and even sold commercially, to be in question. An easy to grow, standardized, inbred diploid Fragaria line with documented genotype that is available to all members of the research community will facilitate comparison of results among laboratories and provide the research community with a necessary tool for functionally testing the large amount of sequence data that will soon be available for peach, apple, and strawberry. Results: A highly inbred line, YW5AF7, of a diploid strawberry Fragaria vesca f. semperflorens line called "Yellow Wonder" (Y2) was developed and examined. Botanical descriptors were assessed for morphological characterization of this genotype. The plant line was found to be rapidly transformable using established techniques and media formulations. Conclusion: The development of the documented YW5AF7 line provides an important tool for Rosaceae functional genomic analyses. These day-neutral plants have a small genome, a seed to seed cycle of 3.0 - 3.5 months, and produce fruit in 7.5 cm pots in a growth chamber. YW5AF7 is runnerless and therefore easy to maintain in the greenhouse, forms abundant branch crowns for vegetative propagation, and produces highly aromatic yellow fruit throughout the year in the greenhouse. F. vesca can be transformed with Agrobacterium tumefaciens, making these plants suitable for insertional mutagenesis, RNAi and overexpression studies that can be compared against a stable baseline of phenotypic descriptors and can be readily genetically substantiated.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Janet P. Slovin

  • Kyle Schmitt

  • Kevin M. Folta

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free