Infectious history.

  • Lederberg J
  • 292

    Readers

    Mendeley users who have this article in their library.
  • 322

    Citations

    Citations of this article.

Abstract

[Gives an overview of medical history leading to the idea that we need to look at things ecologically, rather than trying to dominate and/or eliminate.] In 1530, to express his ideas on the origin of syphilis, the Italian physician Girolamo Fracastoro penned Syphilis, sive morbus Gallicus (Syphilis, or the French disease) in verse. In it he taught that this sexually transmitted disease was spread by "seeds" distributed by intimate contact. In later writings, he expanded this early "contagionist" theory. Besides contagion by personal contact, he described contagion by indirect contact, such as the handling or wearing of clothes, and even contagion at a distance, that is, the spread of disease by something in the air. The Incubation of a Scientific Discipline Many people laid the groundwork for the germ theory. Even the terrified masses touched by the Black Death (bubonic plague) in Europe after 1346 had some intimation of a contagion at work. But they lived within a cognitive framework in which scapegoating, say, of witches and Jews, could more "naturally" account for their woes. Breaking that mindset would take many innovations, including microscopy in the hands of Anton van Leeuwenhoek. In 1683, with one of his new microscopes in hand, he visualized bacteria among the animalcules harvested from his own teeth. That opened the way to visualize some of the dreaded microbial agents eliciting contagious diseases. There were pre-germ-theory advances in therapy, too. Jesuit missionaries in malaria-ridden Peru had noted the native Indians' use of Cinchona bark. In 1627, the Jesuits imported the bark (harboring quinine, its anti-infective ingredient) to Europe for treating malaria. Quinine thereby joined the rarified pharmacopoeia--including opium, digitalis, willow (Salix) bark with its analgesic salicylates, and little else--that prior to the modern era afforded patients any benefit beyond placebo. Beginning in 1796, Edward Jenner took another major therapeutic step--the development of vaccination--after observing that milkmaids exposed to cowpox didn't contract smallpox. He had no theoretical insight into the biological mechanism of resistance to the disease, but vaccination became a lasting prophylactic technique on purely empirical grounds. Jenner's discovery had precursors. "Hair of the dog" is an ancient trope for countering injury and may go back to legends of the emperor Mithridates, who habituated himself to lethal doses of poisons by gradually increasing the dose. We now understand more about a host's immunological response to a cross-reacting virus variant. Sanitary reforms also helped. Arising out of revulsion over the squalor and stink of urban slums in England and the United States, a hygienic movement tried to scrub up dirt and put an end to sewer stenches. The effort had some health impact in the mid-19th century, but it failed to counter diseases spread by fleas and mosquitoes or by personal contact, and it often even failed to keep sewage and drinking water supplies separated. Ironically, even as I advocate this shift from a war metaphor to an ecology metaphor, war in its historic sense is making that more difficult. The darker corner of microbiological research is the abyss of maliciously designed biological warfare (BW) agents and systems to deliver them. What a nightmare for the next millennium! What's worse, for the near future, technology is likely to favor offensive BW weaponry, because defenses will have to cope with a broad range of microbial threats that can be collected today or designed tomorrow. As a measure of social intelligence and policy, we should push for enforcement of the 1975 BW disarmament convention. The treaty forbids the development, production, stockpiling, and use of biological weapons under any circumstances. One of its articles also provides for the international sharing of biotechnology for peaceful purposes. The scientific and humanistic rationale is self-evident: to enhance and apply scientific knowledge to manage infectious disease, naturally occurring or otherwise.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • J. Lederberg

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free