The influence of core properties on the perforation resistance of sandwich structures - An experimental study

  • Hassan M
  • Cantwell W
  • 31

    Readers

    Mendeley users who have this article in their library.
  • 16

    Citations

    Citations of this article.

Abstract

The aim of this study is to investigate the perforation resistance of a range of foam-based sandwich structures. Nine foams, based on a crosslinked PVC, a linear PVC and PET, have been combined with thin glass fibre reinforced plastic skins to produce a range of lightweight sandwich structures, Initially, the mechanical properties of the different foams are characterised. Here, a new test geometry is used to evaluate the toughness characteristics and strengths of the foams under shear loading, a condition similar to that encountered during the impact perforation event. The influence of the plastic collapse stress of the foam in determining the failure thresholds of the front and rear composite skins is established. Here, an existing model has been used to successfully predict failure of the top surface composite skin in the sandwich structures. In addition, the force associated with perforating the lightweight core has been shown to be strongly dependent on the shear strength of the polymer foam. Finally, the perforation resistance of the sandwich structure has been shown to be closely linked to the Mode II work of fracture of the foam material. Here a unique relationship has been established between these two parameters, with all of the experimental points lying on one curve. © 2011 Elsevier Ltd. All rights reserved.

Author-supplied keywords

  • A. Foams
  • B. Impact behaviour
  • D. Mechanical testing
  • E. Thermosetting resin

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • M. Z. Hassan

  • W. J. Cantwell

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free