Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane‐associated N‐terminal domain

  • Hansen M
  • Le Nours J
  • Johansson E
  • et al.
75Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The flavin enzyme dihydroorotate dehydrogenase (DHOD; EC 1.3.99.11) catalyzes the oxidation of dihydroorotate to orotate, the fourth step in the de novo pyrimidine biosynthesis of UMP. The enzyme is a promising target for drug design in different biological and clinical applications for cancer and arthritis. The first crystal structure of the class 2 dihydroorotate dehydrogenase from rat has been determined in complex with its two inhibitors brequinar and atovaquone. These inhibitors have shown promising results as anti‐proliferative, immunosuppressive, and antiparasitic agents. A unique feature of the class 2 DHODs is their N‐terminal extension, which folds into a separate domain comprising two α‐helices. This domain serves as the binding site for the two inhibitors and the respiratory quinones acting as the second substrate for the class 2 DHODs. The orientation of the first N‐terminal helix is very different in the two complexes of rat DHOD (DHODR). Binding of atovaquone causes a 12 Å movement of the first residue in the first α‐helix. Based on the information from the two structures of DHODR, a model for binding of the quinone and the residues important for the interactions could be defined. His 56 and Arg 136, which are fully conserved in all class 2 DHODs, seem to play a key role in the interaction with the electron acceptor. The differences between the membrane‐bound rat DHOD and membrane‐associated class 2 DHODs exemplified by the Escherichia coli DHOD has been investigated by GRID computations of the hydrophobic probes predicted to interact with the membrane.

Cite

CITATION STYLE

APA

Hansen, M., Le Nours, J., Johansson, E., Antal, T., Ullrich, A., Löffler, M., & Larsen, S. (2004). Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane‐associated N‐terminal domain. Protein Science, 13(4), 1031–1042. https://doi.org/10.1110/ps.03533004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free