Integrated genomic map from uropathogenic Escherichia coli J96

  • Melkerson-Watson L
  • Rode C
  • Zhang L
 et al. 
  • 14

    Readers

    Mendeley users who have this article in their library.
  • 10

    Citations

    Citations of this article.

Abstract

Escherichia coli J96 is a uropathogen having both broad similarities to and striking differences from nonpathogenic, laboratory E. coli K-12. Strain J96 contains three large (>100-kb) unique genomic segments integrated on the chromosome; two are recognized as pathogenicity islands containing urovirulence genes. Additionally, the strain possesses a fourth smaller accessory segment of 28 kb and two deletions relative to strain K-12. We report an integrated physical and genetic map of the 5,120-kb J96 genome. The chromosome contains 26 NotI, 13 BlnI, and 7 I-CeuI macrorestriction sites. Macrorestriction mapping was rapidly accomplished by a novel transposon-based procedure: analysis of modified minitransposon insertions served to align the overlapping macrorestriction fragments generated by three different enzymes (each sharing a common cleavage site within the insert), thus integrating the three different digestion patterns and ordering the fragments. The resulting map, generated from a total of 54 mini-Tn10 insertions, was supplemented with auxanography and Southern analysis to indicate the positions of insertionally disrupted aminosynthetic genes and cloned virulence genes, respectively. Thus, it contains not only physical, macrorestriction landmarks but also the loci for eight housekeeping genes shared with strain K-12 and eight acknowledged urovirulence genes; the latter confirmed clustering of virulence genes at the large unique accessory chromosomal segments. The 115-kb J96 plasmid was resolved by pulsed-field gel electrophoresis in NotI digests. However, because the plasmid lacks restriction sites for the enzymes BlnI and I-CeuI, it was visualized in BlnI and I-CeuI digests only of derivatives carrying plasmid inserts artificially introducing these sites. Owing to an I-SceI site on the transposon, the plasmid could also be visualized and sized from plasmid insertion mutants after digestion with this enzyme. The insertional strains generated in construction of the integrated genomic map provide useful physical and genetic markers for further characterization of the J96 genome.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free