Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer

  • M.-S. K
  • Y. K
  • S. L
 et al. 
  • 5

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Background: microRNA (miRNA) expression plays an influential role in cancer classification and malignancy, and miRNAs are feasible as alternative diagnostic markers for pancreatic cancer, a highly aggressive neoplasm with silent early symptoms, high metastatic potential, and resistance to conventional therapies. Methods: In this study, we evaluated the benefits of multi-omics data analysis by integrating miRNA and mRNA expression data in pancreatic cancer. Using support vector machine (SVM) modelling and leave-one-out cross validation (LOOCV), we evaluated the diagnostic performance of single- or multi-markers based on miRNA and mRNA expression profiles from 104 PDAC tissues and 17 benign pancreatic tissues. For selecting even more reliable and robust markers, we performed validation by independent datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) data depositories. For validation, miRNA activity was estimated by miRNA-target gene interaction and mRNA expression datasets in pancreatic cancer. Results: Using a comprehensive identification approach, we successfully identified 705 multi-markers having powerful diagnostic performance for PDAC. In addition, these marker candidates annotated with cancer pathways using gene ontology analysis. Conclusions: Our prediction models have strong potential for the diagnosis of pancreatic cancer. Copyright © 2015 Kwon et al.

Author-supplied keywords

  • *diagnosis
  • *gene expression
  • *messenger RNA
  • *microRNA
  • *pancreas adenocarcinoma/di [Diagnosis]
  • *pancreas cancer
  • article
  • cancer diagnosis
  • controlled study
  • data analysis
  • diagnostic test accuracy study
  • diagnostic value
  • disease model
  • gene activity
  • gene expression profiling
  • gene interaction
  • gene ontology
  • gene targeting
  • genetic database
  • genetic marker
  • histopathology
  • human
  • human tissue
  • major clinical study
  • messenger RNA
  • microRNA
  • pancreatic tissue
  • prediction
  • reliability
  • sensitivity and specificity
  • statistical model
  • support vector machine
  • validation process
  • validation study

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Kwon M.-S.

  • Kim Y.

  • Lee S.

  • Namkung J.

  • Yun T.

  • Yi S.G.

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free