Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals

  • Wei M
  • Ruys A
  • Swain M
 et al. 
  • 36

    Readers

    Mendeley users who have this article in their library.
  • 119

    Citations

    Citations of this article.

Abstract

Hydroxyapatite (HAp) coatings were deposited onto substrates of metal biomaterials (Ti, Ti6Al4V, and 316L stainless steel) by electrophoretic deposition (EPD). Only ultra-high surface area HAp powder, prepared by the metathesis method 10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH), could produce dense coatings when sintered at 875-1000degreesC. Single EPD coatings cracked during sintering owing to the 15-18% sintering shrinkage, but the HAp did not decompose. The use of dual coatings (coat, sinter, coat, sinter) resolved the cracking problem. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) inspection revealed that the second coating filled in the "valleys" in the cracks of the first coating. The interfacial shear strength of the dual coatings was found, by ASTM F1044-87, to be approximately 12 MPa on a titanium substrate and approximately 22 MPa on 316L stainless steel, comparing quite favorably with the 34 MPa benchmark (the shear strength of bovine cortical bone was found to be 34 MPa). Stainless steel gave the better result since -316L (20.5 microm mK(-1)) > alpha-HAp (approximately 14 microm mK(-1)), resulting in residual compressive stresses in the coating, whereas alpha-titanium (approximately 10.3 microm mK(-1)) < alpha-HAp, resulting in residual tensile stresses in the coating.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free