Interference of the life cycle of fish nodavirus with fish retrovirus

  • Lee K
  • Chi S
  • Cheng T
  • 23

    Readers

    Mendeley users who have this article in their library.
  • 17

    Citations

    Citations of this article.

Abstract

Interference of the life cycle of grouper nervous necrosis virus (GNNV), a member of the Nodaviridae, genus Betanodavirus, by snakehead retrovirus (SnRV) has been studied in vitro. SGF-1, a new fish cell line that is persistently infected with SnRV, was induced by inoculating SnRV into the grouper fin cell line GF-1. Culture supernatants and cell pellets from both GNNV-infected SGF-1 and GF-1 cells were collected and employed for virus productivity analysis. The yields of GNNV RNA and capsid protein in GNNV-infected SGF-1 cells were similar to those in GNNV-infected GF-1 cells. However, when GF-1 cells were used for titration, the titre of the culture supernatant from GNNV-infected SGF-1 cells was much higher than that from GNNV-infected GF-1 cells. The titration result suggested that SnRV enhanced the infection or cytopathic effect (CPE) of GNNV during GNNV and SnRV coinfection of the GF-1 cell titration system, although SnRV cannot induce any CPE in GF-1 cells alone, nor can it increase the yield of GNNV after GNNV superinfection of SGF-1 cells. Moreover, GNNV cDNA was detected in both the pellet and the supernatant from GNNV-infected SGF-1 cells. This result indicated that SnRV reverse-transcribed the GNNV single-stranded genomic RNA into cDNA during GNNV superinfection of SGF-1 cells and created a new cDNA stage in the life cycle of the fish nodavirus.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • K. W. Lee

  • S. C. Chi

  • T. M. Cheng

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free