Invertebrates in the canopy of tropical rain forests: How much do we really know?

  • Basset Y
  • 261


    Mendeley users who have this article in their library.
  • 91


    Citations of this article.


The current state of knowledge of canopy invertebrates in tropical rain forests is reviewed using data drawn, without bias toward taxon, collecting method or biogeographical region, from 89 studies concerned with mass-collecting (>1000 individuals). The review is intended to identify the most serious gaps and biases in the distribution of higher taxa among forest types and biogeographical regions. With respect to knowledge, biogeographical regions can be ranked as Neotropical > Australian > Oriental > Afrotropical. The canopy of lowland wet and subtropical forests has been studied in greater detail, whereas the canopy of lowland dry and montane forests is much less well known. Collecting techniques influence greatly the present knowledge of canopy invertebrates. Invertebrates other than arthropods, often abundant in epiphytic habitats, phytotelmata and perched litter, are virtually unknown. The abundance of several groups, such as Acari, Collembola and Isoptera, is almost certainly seriously underestimated. Densities of invertebrate individuals in the canopy of tropical rain forests appear to be lower than in temperate forests, although invertebrate abundance is dissipated by the high standing-biomass of rain forests. Coleoptera, particularly Staphylinidae, Curculionidae and Chrysomelidae, along with Hymenoptera, Lepidoptera and Araneae appear to be the most speciose taxa in the canopy, and it is probable that this reflects their range of feeding habits and exploitation of rain forests habitats. The distribution of individuals among the major arthropod orders and across the studies examined is complex and depends on many factors. The amount of variance that can be directly explained by biogeography, forest types (subtropical, wet, dry or montane), or collecting methods appears to be about 11%. The explained variance increases when considering major families of Coleoptera (28%) or subfamilies of Chrysomelidae (40%). In all cases, the variance explained by the type of forest is much higher than by that explained by biogeography. These conclusions are similar when considering various prey-predator relationships in the canopy. This suggests that, at the higher taxa level, the composition of the invertebrate fauna in the canopy may vary comparatively more across forest types than across biogeographical regions and this is discussed briefly from a conservation viewpoint.

Author-supplied keywords

  • Biodiversity
  • Biogeography
  • Collecting methods
  • Conservation
  • Predator-prey relationships
  • Species richness

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free