Investigating the complexity of respiratory patterns during the laryngeal chemoreflex

  • Dragomir A
  • Akay Y
  • Akay M
  • 6


    Mendeley users who have this article in their library.
  • 0


    Citations of this article.


BACKGROUND: The laryngeal chemoreflex exists in infants as a primary sensory mechanism for defending the airway from the aspiration of liquids. Previous studies have hypothesized that prolonged apnea associated with this reflex may be life threatening and might be a cause of sudden infant death syndrome.

METHODS: In this study we quantified the output of the respiratory neural network, the diaphragm EMG signal, during the laryngeal chemoreflex and eupnea in early postnatal (3-10 days) piglets. We tested the hypothesis that diaphragm EMG activity corresponding to reflex-related events involved in clearance (restorative) mechanisms such as cough and swallow exhibit lower complexity, suggesting that a synchronized homogeneous group of neurons in the central respiratory network are active during these events. Nonlinear dynamic analysis was performed using the approximate entropy to asses the complexity of respiratory patterns.

RESULTS: Diaphragm EMG, genioglossal activity EMG, as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from 5 unanesthetized chronically instrumented intact piglets. Approximate entropy values of the EMG during cough and swallow were found significantly (p < 0.05 and p < 0.01 respectively) lower than those of eupneic EMG.

CONCLUSION: Reduced complexity values of the respiratory neural network output corresponding to coughs and swallows suggest synchronous neural activity of a homogeneous group of neurons. The higher complexity values exhibited by eupneic respiratory activity are the result of a more random behaviour, which is the outcome of the integrated action of several groups of neurons involved in the respiratory neural network.

Author-supplied keywords

  • Approximate entropy
  • Biocomplexity
  • EMG
  • Laryngeal chemoreflex
  • Respiratory neural network

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • A. Dragomir

  • Y. Akay

  • M. Akay

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free