Investigation of phosphate adsorption onto ferrihydrite by X-ray Photoelectron Spectroscopy

  • Mallet M
  • Barthélémy K
  • Ruby C
 et al. 
  • 42

    Readers

    Mendeley users who have this article in their library.
  • 41

    Citations

    Citations of this article.

Abstract

The objective of this study was to characterize phosphate adsorption onto synthetic 2-lines ferrihydrite using surface analysis by X-ray Photoelectron Spectroscopy and batch experiments. Surface analysis of ferrihydrite samples before phosphate sorption gives very reproducible Fe:O surface ratios of (1:3±0.1). Phosphate sorption onto ferrihydrite was investigated by means of pH, initial phosphate concentration, and ionic strength effects. Additionally, potential background electrolyte influence on phosphate adsorption was also determined. Phosphate uptake by ferrihydrite significantly increases with decreasing pH, with a maximum uptake of 104.8mgPO4g-1obtained at pH=4. Phosphate removal increases with the enhancement of ionic strength in agreement with the formation of inner-sphere complexes. The presence of chloride, nitrate, and sulfate showed no competing effect on phosphate removal efficiency. Sorption kinetics follow a pseudo-second order model (R2>0.99) and the Freundlich isotherm model adequately describes sorption (R2=0.995). The careful examination of high resolution Fe 2p, O 1s, and P 2p spectra before and after phosphate sorption allows the characterization of the modifications occurring onto the ferrihydrite surface. The binding energy of the P 2p peak agrees well with that observed in Fe-PO4compounds. Additionally, binding energy shifts in the Fe 2p spectra combined to variations in the relative intensity of the components in the high resolution O 1s spectra illustrate well the formation of chemical bonding between iron and phosphate anions at the ferrihydrite surface. © 2013 Elsevier Inc.

Author-supplied keywords

  • Adsorption
  • Ferrihydrite
  • Phosphate
  • X-ray Photoelectron Spectroscopy

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • M. Mallet

  • K. Barthélémy

  • C. Ruby

  • A. Renard

  • S. Naille

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free