Skip to content
Journal article

Isotope effects in N2O photolysis from first principles

Schmidt J, Johnson M, Schinke R ...see all

Atmospheric Chemistry and Physics, vol. 11, issue 17 (2011) pp. 8965-8975

  • 14

    Readers

    Mendeley users who have this article in their library.
  • 27

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

For the first time, accurate first principles poten- tial energy surfaces allow N2O cross sections and isotopic fractionation spectra to be derived that are in agreement with all available experimental data, extending our knowledge to a much broader range of conditions. Absorption spec- tra of rare N- and O-isotopologues (15N14N16O, 14N15N16O, 15N216O, 14N17 2 O and 14N18 2 O) calculated using wavepacket propagation are compared to themost abundant isotopologue (14N16 2 O). The fractionation constants as a function of wave- length and temperature are in excellent agreement with ex- perimental data. The study shows that excitations from the 3rd excited bending state, (0,3,0), and the first combination state, (1,1,0), are important for explaining the isotope effect at wavelengths longer than 210 nm. Only a small amount of the mass independent oxygen isotope anomaly observed in atmospheric N2O samples can be explained as arising from photolysis.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below