*K-means and cluster models for cancer signatures

34Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.

Cite

CITATION STYLE

APA

Kakushadze, Z., & Yu, W. (2017). *K-means and cluster models for cancer signatures. Biomolecular Detection and Quantification, 13, 7–31. https://doi.org/10.1016/j.bdq.2017.07.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free