Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner

  • Houreld N
  • Abrahamse H
  • 22

    Readers

    Mendeley users who have this article in their library.
  • 49

    Citations

    Citations of this article.

Abstract

Phototherapy stimulates metabolic processes in healing wounds. Despite worldwide interest, phototherapy is not firmly established or practiced in South Africa. This study aimed to determine which dose and wavelength would better induce healing in vitro. Diabetic-induced wounded fibroblasts were irradiated with 5 or 16 J/cm(2) at 632.8, 830, or 1,064 nm. Cellular morphology, viability (Trypan blue and apoptosis), and proliferation (basic fibroblast growth factor) were then determined. Cells irradiated with 5 J/cm(2) at 632.8 nm showed complete wound closure and an increase in viability and basic fibroblast growth factor (bFGF) expression. Cells irradiated at 830 nm showed incomplete wound closure and an increase in bFGF expression. Cells irradiated at 1,064 nm showed incomplete closure and increased apoptosis. All cells irradiated with 16 J/cm(2) at all three wavelengths showed incomplete wound closure, increased apoptosis, and decreased bFGF expression. This study showed that diabetic-wounded cells respond in a dose- and a wavelength-dependent manner to laser light. Cells responded the best when irradiated with a fluence of 5 J/cm(2) at a wavelength of 632.8 nm.

Author-supplied keywords

  • Apoptosis
  • Laser
  • Photostimulation
  • Proliferation
  • Viability
  • bFGF

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free