Learning when training data are costly: The effect of class distribution on tree induction

  • Weiss G
  • Provost F
  • 218

    Readers

    Mendeley users who have this article in their library.
  • 491

    Citations

    Citations of this article.

Abstract

For large, real-world inductive learning problems, the number of training examples often must be limited due to the costs associated with procuring, preparing, and storing the training examples and/or the computational costs associated with learning from them. In such circumstances, one question of practical importance is: if only n training examples can be selected, in what proportion should the classes be represented? In this article we help to answer this question by analyzing, for a fixed training-set size, the relationship between the class distribution of the training data and the performance of classification trees induced from these data. We study twenty-six data sets and, for each, determine the best class distribution for learning. The naturally occurring class distribution is shown to generally perform well when classifier performance is evaluated using undifferentiated error rate (0/1 loss). However, when the area under the ROC curve is used to evaluate classifier performance, a balanced distribution is shown to perform well. Since neither of these choices for class distribution always generates the best-performing classifier, we introduce a budget-sensitive progressive sampling algorithm for selecting training examples based on the class associated with each example. An empirical analysis of this algorithm shows that the class distribution of the resulting training set yields classifiers with good (nearly-optimal) classification performance.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Gary M. Weiss

  • Foster Provost

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free